On domination in connected cubic graphs
نویسندگان
چکیده
In 1996, Reed proved that the domination number (G) of every n-vertex graph G with minimum degree at least 3 is at most 3n/8.Also, he conjectured that (H) n/3 for every connected 3-regular (cubic) n-vertex graph H. In this note, we disprove this conjecture. We construct a connected cubic graph G on 60 vertices with (G) = 21 and present a sequence {Gk}∞k=1 of connected cubic graphs with lim k→∞ (Gk) |V (Gk)| 8 23 = 1 3 + 1 69 . © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Domination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملA Characterization of the Cactus Graphs with Equal Domination and Connected Domination Numbers
A cactus graph is a connected graph in which any two cycles have at most one vertex in common. Let γ(G) and γc(G) be the domination number and connected domination number of a graph G, respectively. We can see that γ(G) ≤ γc(G) for any graph G. S. Arumugam and J. Paulraj Joseph [1] have characterized trees, unicyclic graphs and cubic graphs with equal domination and connected domination numbers...
متن کاملMagdalena Lemańska WEAKLY CONVEX AND CONVEX DOMINATION NUMBERS
Two new domination parameters for a connected graph G: the weakly convex domination number of G and the convex domination number of G are introduced. Relations between these parameters and the other domination parameters are derived. In particular, we study for which cubic graphs the convex domination number equals the connected domination number.
متن کاملOn Domination in 2-Connected Cubic Graphs
In 1996, Reed proved that the domination number, γ(G), of every n-vertex graph G with minimum degree at least 3 is at most 3n/8 and conjectured that γ(H) ≤ dn/3e for every connected 3-regular (cubic) n-vertex graph H. In [1] this conjecture was disproved by presenting a connected cubic graph G on 60 vertices with γ(G) = 21 and a sequence {Gk} ∞ k=1 of connected cubic graphs with limk→∞ γ(Gk) |V...
متن کاملCubic Graphs with Large Ratio of Independent Domination Number to Domination Number
A dominating set in a graph G is a set S of vertices such that every vertex outside S has a neighbor in S; the domination number γ(G) is the minimum size of such a set. The independent domination number, written i(G), is the minimum size of a dominating set that also induces no edges. Henning and Southey conjectured that if G is a connected cubic graph with sufficiently many vertices, then i(G)...
متن کاملOn Domination in Cubic Graphs
Let v(G) and γ(G) denote the number of vertices and the domination number of a graph G, respectively, and let ρ(G) = γ(G)/v(G). In 1996 B. Reed conjectured that if G is a cubic graph, then γ(G) ≤ dv(G)/3e. In 2005 A. Kostochka and B. Stodolsky disproved this conjecture for cubic graphs of connectivity one and maintained that the conjecture may still be true for cubic 2-connected graphs. Their m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 304 شماره
صفحات -
تاریخ انتشار 2005